【題目】設為數(shù)列前項的和,,數(shù)列的通項公式.
(1)求數(shù)列的通項公式;
(2)若,則稱為數(shù)列與的公共項,將數(shù)列與的公共項,按它們在原數(shù)列中的先后順序排成一個新數(shù)列,求的值;
(3)是否存在正整數(shù)、、使得成立,若存在,求出、、;若不存在,說明理由.
【答案】(1);(2),數(shù)列和的值為;(3)存在,,,.
【解析】
(1)根據(jù),得時,,兩式相減得到,再求出時,的值,利用等比數(shù)列通項公式,得到答案;(2)根據(jù),可得,,,,求出的通項,根據(jù)無窮等比數(shù)列的求和公式,即可求出答案;(3)假設存在整數(shù)、、使得成立,從而得到,根據(jù)等式兩邊的奇偶,得到,進而得到和的值.
(1)因為,
所以當時,,
兩式相減,得到,
即
時,,解得
所以數(shù)列是以為首項,為公比的等比數(shù)列,
所以.
(2),.
可得,,,
所以得到
所以
所以
.
(3)假設存在整數(shù)、、使得成立,
則
即
即
等式右邊為奇數(shù),要使等式成立,則左邊也要為奇數(shù)
又因,所以只能有,
故
可得
即
等式右邊為奇數(shù),要使等式成立,則左邊也要為奇數(shù)
又因,所以只能有
故
可得,所以
所以只存在一組正整數(shù)、、,使得成立.
科目:高中數(shù)學 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;
(2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的一個頂點與拋物線的焦點重合,、分別是橢圓的左、右焦點,其離心率橢圓右焦點的直線與橢圓交于、兩點.
(1)求橢圓的方程;
(2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調區(qū)間;
(2)若函數(shù)在區(qū)間內有兩個極值點、,求實數(shù)的取值范圍;
(3)在(1)的基礎上,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調查結果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認為“古文迷”與性別有關?
(Ⅱ)現(xiàn)從調查的女生中按分層抽樣的方法抽出5人進行調查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調查,記這3人中“古文迷”的人數(shù)為,求隨機變量的分布列與數(shù)學期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校教務處對學生學習的情況進行調研,其中一項是:對“學習數(shù)學”的態(tài)度是否與性別有關,可見隨機抽取了30名學生進行了問卷調查,得到了如下聯(lián)表:
男生 | 女生 | 合計 | |
喜歡 | 10 | ||
不喜歡 | 8 | ||
合計 | 30 |
已知在這30人中隨機抽取1人,抽到喜歡“學習數(shù)學”的學生的概率是.
(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程);
(2)若從喜歡“學習數(shù)學”的女生中抽取2人進行調研,其中女生甲被抽到的概率為多少?(要寫求解過程)
(3)試判斷是否有95%的把握認為喜歡“學習數(shù)學”與性別有關?
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com