【題目】已知橢圓的左、右頂點(diǎn)分別為CD,且過(guò)點(diǎn),P是橢圓上異于CD的任意一點(diǎn),直線PC,PD的斜率之積為

1)求橢圓的方程;

2O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.

【答案】12

【解析】

(1)設(shè),根據(jù)題意可求得,再代入橢圓方程即可求解.

(2)根據(jù)(1)中的結(jié)論, 設(shè)直線,并聯(lián)立與橢圓的方程,求得,,再表達(dá)出,根據(jù)恒成立問(wèn)題求得系數(shù)的關(guān)系即可.也可直接設(shè)表達(dá)出,利用滿足橢圓的方程進(jìn)行化簡(jiǎn),同理可得m的值.

解:(1)橢圓過(guò)點(diǎn),∴,①

又因?yàn)橹本的斜率之積為,故.

.,②

聯(lián)立①②得

∴所求的橢圓方程為

2)方法1:由(1)知,.由題意可設(shè),

x=m,.又設(shè)

整理得:

,∴,,

所以,

,

要使k無(wú)關(guān),只需,此時(shí)恒等于4.

方法2:設(shè),則,令x=m,,

,

所以,

要使無(wú)關(guān),只須,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

1)當(dāng)時(shí),求的極值;

2)當(dāng)時(shí),函數(shù)的圖象與函數(shù)的圖象有唯一的交點(diǎn),求的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),令

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足,

①函數(shù)f(x)是增函數(shù);

②數(shù)列{an}是遞增數(shù)列.

寫(xiě)出一個(gè)滿足①的函數(shù)f(x)的解析式______

寫(xiě)出一個(gè)滿足②但不滿足①的函數(shù)f(x)的解析式______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足: 的前項(xiàng)和為并規(guī)定.定義集合, ,

Ⅰ)對(duì)數(shù)列, , , , ,求集合

Ⅱ)若集合, ,證明: ;

Ⅲ)給定正整數(shù)對(duì)所有滿足的數(shù)列,求集合的元素個(gè)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的兩個(gè)零點(diǎn)之差的絕對(duì)值的最小值為,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則下列說(shuō)法正確的是(

①函數(shù)的最小正周期為;②函數(shù)的圖象關(guān)于點(diǎn)()對(duì)稱;

③函數(shù)的圖象關(guān)于直線對(duì)稱;④函數(shù)上單調(diào)遞增.

A.①②③④B.①②C.②③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】明朝的程大位在《算法統(tǒng)宗》中(1592年),有這么個(gè)算法歌訣:三人同行七十稀,五樹(shù)梅花廿一枝,七子團(tuán)圓正半月,除百零五便得知.它的意思是說(shuō):求某個(gè)數(shù)(正整數(shù))的最小正整數(shù)值,可以將某數(shù)除以3所得的余數(shù)乘以70,除以5所得的余數(shù)乘以21,除以7所得的余數(shù)乘以15,再將所得的三個(gè)積相加,并逐次減去105,減到差小于105為止,所得結(jié)果就是這個(gè)數(shù)的最小正整數(shù)值.《孫子算經(jīng)》上有一道極其有名的物不知數(shù)問(wèn)題:今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,七七數(shù)之余二,問(wèn)物幾何.”用上面的算法歌訣來(lái)算,該物品最少是幾件(

A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,Q是拋物線上的一點(diǎn),

(Ⅰ)求拋物線C的方程;

(Ⅱ)過(guò)點(diǎn)作直線l與拋物線C交于MN兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求曲線的公切線方程:

2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案