已知雙曲線(xiàn)=1(a>0,b>0)與拋物線(xiàn)y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線(xiàn)的一個(gè)交點(diǎn)為P,若PF=5,則雙曲線(xiàn)的漸近線(xiàn)方程為_(kāi)_______.

 

y=±x

【解析】設(shè)點(diǎn)P(m,n),依題意得,點(diǎn)F(2,0),由點(diǎn)P在拋物線(xiàn)y2=8x上,且PF=5得由此解得m=3,n2=24.于是有由此解得a2=1,b2=3,該雙曲線(xiàn)的漸近線(xiàn)方程為y=±x=±x.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第5課時(shí)練習(xí)卷(解析版) 題型:填空題

某單位組織4個(gè)部門(mén)的職工旅游,規(guī)定每個(gè)部門(mén)只能在韶山、衡山、張家界3個(gè)景區(qū)中任選一個(gè),假設(shè)各部門(mén)選擇每個(gè)景區(qū)是等可能的.則3個(gè)景區(qū)都有部門(mén)選擇的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

在(x-)10的展開(kāi)式中,x6的系數(shù)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在直線(xiàn)2x-y-4=0上,求拋物線(xiàn)的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

已知雙曲線(xiàn)=1的離心率為2,焦點(diǎn)到漸近線(xiàn)的距離等于,過(guò)右焦點(diǎn)F2的直線(xiàn)l交雙曲線(xiàn)于A(yíng)、B兩點(diǎn),F(xiàn)1為左焦點(diǎn).

(1)求雙曲線(xiàn)的方程;

(2)若△F1AB的面積等于6,求直線(xiàn)l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

雙曲線(xiàn)C與橢圓=1有相同的焦點(diǎn),直線(xiàn)y=x為C的一條漸近線(xiàn).求雙曲線(xiàn)C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:填空題

雙曲線(xiàn)的焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)_____________________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且直線(xiàn)x=4是它的右準(zhǔn)線(xiàn).

(1)求橢圓的方程;

(2)設(shè)P為橢圓右準(zhǔn)線(xiàn)上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線(xiàn)BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線(xiàn)y=0相切的圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案