(本小題滿分13分)
某商場根據(jù)調(diào)查,估計家電商品從年初(1月)開始的個月內(nèi)累計的需求量(百件)為
(1)求第個月的需求量的表達(dá)式.
(2)若第個月的銷售量滿足(單位:百件),每件利潤元,求該商場銷售該商品,求第幾個月的月利潤達(dá)到最大值?最大是多少?
(1);(2)當(dāng)?shù)?個月利潤最大,是30000元。

試題分析:(1)
                     (4分)
(2)設(shè)該商場第個月的月利潤為元,則
 (5分)

                       (8分)

                          (12分)
當(dāng)?shù)?個月利潤最大,是30000元                    (13分)
點評:(1)在做第一問時,不要忘記對的討論。求f(x)的解析式,類似于已知數(shù)列的前n項和。(2)本題考查函數(shù)模型的建立及解決實際問題的能力,同時也考查學(xué)生的計算能力,屬于中檔題型。(3)在做第二問時,一定要注意單位。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某種產(chǎn)品投放市場以來,通過市場調(diào)查,銷量t(單位:噸)與利潤Q(單位:萬元)的變化關(guān)系如右表,現(xiàn)給出三種函數(shù),,,請你根據(jù)表中的數(shù)據(jù),選取一個恰當(dāng)?shù)暮瘮?shù),使它能合理描述產(chǎn)品利潤Q與銷量t的變化,求所選取的函數(shù)的解析式,并求利潤最大時的銷量.
銷量t
1
4
6
利潤Q
2
5
4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上的偶函數(shù),滿足,當(dāng)時,,則(    )
A.    B.
C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)為奇函數(shù),則           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知是定義在R上的奇函數(shù),且,求:
(1)的解析式。   
(2)已知,求函數(shù)在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.
(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(1)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);
(2)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

 的零點個數(shù)為
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個“類”,記為,即
給出四個結(jié)論:
,②,③,④整數(shù)屬于同一“類”,當(dāng)且僅當(dāng)是,其中正確結(jié)論的個數(shù)是(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

海事救援船對一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點,以正北方向為軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里處,如圖,現(xiàn)假設(shè):①失事船的移動路徑可視為拋物線;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)小時后,失事船所在位置的橫坐標(biāo)為

(1)當(dāng)時,寫出失事船所在位置的縱坐標(biāo),若此時兩船恰好會合,求救援船速度的大小和方向 (若確定方向時涉及到的角為非特殊角,用符號及其滿足的條件表示即可)
(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

同步練習(xí)冊答案