(本小題12分)
已知函數(shù),其中。
求函數(shù)的最大值和最小值;
若實(shí)數(shù)滿足:恒成立,求的取值范圍。
,
解析試題分析:解:(1)∵
∴ —————————————2’
令,∵,∴。
令()—————————————4’
當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù)。
∴———————————————8’
(2)∵恒成立,即恒成立!恒成立。
由(1)知,∴。
故的取值范圍為 ————————————————12’
考點(diǎn):二次函數(shù)與不等式的恒成立問題
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于變量的整體代換求解函數(shù)的最值,同時(shí)能結(jié)合不等式恒成立分離參數(shù)來求解參數(shù)的范圍屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/b/ramqe1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分7分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的定義域;
(Ⅱ)當(dāng)函數(shù)的定義域?yàn)镽時(shí),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)在上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求在上的最大值和最小值;
(3) 當(dāng)時(shí),求證:對(duì)大于1的任意正整數(shù),都有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,滿足,.
(1)求,的值;
(2)若各項(xiàng)為正的數(shù)列的前項(xiàng)和為,且有,設(shè),求數(shù)列的前項(xiàng)和;
(3)在(2)的條件下,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知函數(shù).
(1) 若不等式的解集為,求實(shí)數(shù)的值;
(2) 在(1)的條件下,使能成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(1)解關(guān)于x的不等式f(x)<0;
(2)當(dāng)c=-2時(shí),不等式f(x)>ax-5在上恒成立,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;
(2)若函數(shù)在區(qū)間與上各有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com