下列函數(shù)中既是偶函數(shù),又是其定義域上的周期函數(shù)的是( 。
A、y=-sin(x+
π
2
)+1
B、y=x 
1
2
C、y=cos(2x+
π
3
D、y=x-3
考點:函數(shù)奇偶性的判斷,函數(shù)的周期性
專題:計算題,函數(shù)的性質及應用
分析:運用奇偶性的定義和周期公式,結合常見函數(shù)的奇偶性和周期性,即可得到既是偶函數(shù),又是其定義域上的周期函數(shù)的函數(shù).
解答: 解:對于A.y=-cosx+1,即為最小正周期為2π的周期函數(shù),且為偶函數(shù),則A滿足;
對于B.定義域為[0,+∞),不關于原點對稱,不具奇偶性,則B不滿足;
對于C.為周期為π的函數(shù),不是偶函數(shù),則C不滿足;
對于D.定義域為{x|x≠0},關于原點對稱,且有f(-x)=-f(x),則為奇函數(shù),則D不滿足.
故選A.
點評:本題考查函數(shù)的奇偶性和周期性的判斷,考查運用定義和出常見函數(shù)的奇偶性和單調性進行判斷,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若把正整數(shù)按圖所示的規(guī)律排序,則從2002到2004年的箭頭方向依次為
1 4
 
23
 
 
5 8
 
67
 
 
9 12
 
1011
( 。
A、↓→B、→↓C、↑→D、→↑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2x3-9x2+12x-a恰好有兩個不同的零點,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果集合A={x|x≤
3
},a=
5
-2,那么( 。
A、a∉AB、{a}?A
C、{a}∈AD、a⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列1,2,4,8…前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a6=S3=12,則a4=( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2和y=
8
x
的圖象都過點A,且點A在直線
x
m
+
y
2n
=1(m>0,n>0)上,則log2m+log2n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
6|x-2|-6,1≤x≤3
1
3
f(
x
3
),x>3
.有下列說法:
①函數(shù)f(x)的值域為[-6,0];
②函數(shù)g(x)=f(x)+2•(
1
3
n有2n+5(n∈N*)個不相同的零點;
③當x∈[3n-1,3n)(n∈N*)時,函數(shù)f(x)的圖象與x軸圍成的圖形的面積為6;
④若關于x的不等式x|f(x)|>m在x∈[1,+∞)上有解,則m的取值范圍是(-∞,12].
其中說法正確的總個數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x+x-1=3,求下列各式的值:
x
1
2
+x-
1
2
;
x
3
2
+x-
3
2
;
x3+x-3+2
x2+x-2+3

查看答案和解析>>

同步練習冊答案