已知△ABC中,點(diǎn)A、B、C的坐標(biāo)依次是A(2,-1),B(3,2),C(-3,-1),BC邊上的高為AD,則
AD
的坐標(biāo)是:
 
分析:由D在AC上,所以存在實(shí)數(shù)λ使
BD
BC
,可由λ表達(dá)出D的坐標(biāo),再由AD⊥BC可求出λ,進(jìn)而可求得點(diǎn)D和向量
AD
的坐標(biāo).
解答:解:∵A(2,-1),B(3,2),C(-3,-1),
BC
=(-6,-3),
由D在BC上,存在實(shí)數(shù)λ使
BD
BC
=(-6λ,-3λ),
∴D(-6λ+3,-3λ+2)
因此,
AD
=(-6λ+1,-3λ+3),
∵AD⊥BC,
AD
BC
=(-6λ+1)×(-6)+(-3λ+3)×(-3)=0,解之得λ=
1
3

所以D(1,1),可得
AD
=(-1,2)
故答案為:(-1,2).
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)和向量的坐標(biāo)、向量的數(shù)量積、兩個(gè)向量共線和垂直的條件等知識(shí),考查運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,點(diǎn)A(3,0),B(0,3),C(rcosα,rsinα)(r>0).
(1)若r=1,且
AC
BC
=-1
,求sin2a的值;
(2)若r=3,且∠ABC=60°,求AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,點(diǎn)A(3,-1),AB邊上的中線所在直線的方程為6x+10y-59=0,∠B的平分線所在直線的方程為x-4y+10=0,求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,點(diǎn)A(1,2),AB邊和AC邊上的中線方程分別是5x-3y-3=0和7x-3y-5=0,求BC所在的直線方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,點(diǎn)A,B,C的坐標(biāo)分別為A(1,4),B(3,7),C(2,8)則△ABC的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案