(2012•福建)等差數(shù)列{an}中,a1+a5=10,a4=7,則數(shù)列{an}的公差為( 。
分析:設(shè)數(shù)列{an}的公差為d,則由題意可得 2a1+4d=10,a1+3d=7,由此解得d的值.
解答:解:設(shè)數(shù)列{an}的公差為d,則由a1+a5=10,a4=7,可得 2a1+4d=10,a1+3d=7,解得 d=2,
故選B.
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)如圖,等邊三角形OAB的邊長為8
3
,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相較于點(diǎn)Q.證明以PQ為直徑的圓恒過y軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌          甲       乙
首次出現(xiàn)故障時(shí)間x(年) 0<x<1 1<x≤2 x>2 0<x≤2 x>2
轎車數(shù)量(輛) 2 3 45 5 45
每輛利潤(萬元) 1 2 3 1.8 2.9
將頻率視為概率,解答下列問題:
(I)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012福建理)受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計(jì)書數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時(shí)間

轎車數(shù)量(輛)

2

3

45

5

45

輛利潤(萬元)

1

2

3

將頻率視為概率,解答下列問題:

(I)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為,生產(chǎn)一輛乙品牌轎車的利潤為,分別求的分布列;

(III)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

同步練習(xí)冊答案