直線l的參數(shù)方程為
x=1+2t
y=1-2t
(t
為參數(shù)),圓C:
x=2cosα
y=2sinα
為參數(shù)).
(Ⅰ)以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(Ⅱ)直線l交圓C于A,B兩點,求AB弦長.
分析:(Ⅰ)把圓C的參數(shù)方程利用同角三角函數(shù)的基本關(guān)系消去參數(shù),化為普通方程,再化為它的極坐標(biāo)方程.
(Ⅱ)把直線l的參數(shù)方程消去參數(shù),化為普通方程,求出圓心到直線l的距離,再由由垂徑定理求得|AB|的值.
解答:解:(Ⅰ)把圓C:
x=2cosα
y=2sinα
為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù),
可得圓C的普通方程為x2+y2=4,它的極坐標(biāo)方程為ρ=2.
(Ⅱ)把直線l的參數(shù)方程為
x=1+2t
y=1-2t
(t
為參數(shù)),消去參數(shù),化為普通方程為y=-x+2,
圓心到直線l的距離為d=
2
2
=
2
,
由垂徑定理得
|AB|
2
=
4-2
=
2
,故|AB|=2
2
點評:本題主要考查把參數(shù)方程化為普通方程的方法,點到直線的距離公式、垂徑定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤α<π).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ=4sinθ.
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點A、B,若|AB|=8,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=
3
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為
x=3-
2
2
t
y=
2
2
t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點A,B,若點P的坐標(biāo)為(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)選修4-4:坐標(biāo)系與參數(shù)方程
已知:直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),曲線C的參數(shù)方程為
x=2+cosθ
y=sinθ
(θ為參數(shù)).
(1)若在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
π
3
),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求點Q到直線l的距離的最大值與最小值的差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=2+t
y=1-2t
(t為參數(shù)),設(shè)直線l的傾斜角為θ,則tanθ=( 。
A、2B、-2C、5D、-5

查看答案和解析>>

同步練習(xí)冊答案