【題目】如圖,二面角α﹣1﹣β的平面角的大小為60°,A,B是1上的兩個(gè)定點(diǎn),且AB=2.C∈α,D∈β,滿足AB與平面BCD所成的角為30°,且點(diǎn)A在平面BCD上的射影H在△BCD的內(nèi)部(包括邊界),則點(diǎn)H的軌跡的長(zhǎng)度等于( )
A.B.C.D.
【答案】A
【解析】
根據(jù)題意:點(diǎn)H的軌跡是以點(diǎn)B為球心,以為半徑的球與以AB為軸,母線AH與軸AB成60°的圓錐側(cè)面交線的一部分,該部分是圓心角為的弧長(zhǎng),只要求出半徑即可.
如圖所示:
因?yàn)?/span>AB與平面BCD所成的角為30°,且點(diǎn)A在平面BCD上的射影H, AB=2,
所以,
所以點(diǎn)H在以點(diǎn)B為球心,以為半徑的球面上,
又點(diǎn)H在以AB為軸,以AH為母線的圓錐的側(cè)面上,
所以點(diǎn)H的軌跡為以點(diǎn)B為球心,以為半徑的球與以AB為軸,母線AH與軸AB成60°的圓錐側(cè)面交線的一部分,
即圖中扇形EOF的弧EF,且扇形所在平面垂直于AB,
因?yàn)槎娼?/span>α﹣1﹣β的平面角的大小為60°,
所以∠EOF=60°,
又,
所以點(diǎn)H的軌跡的長(zhǎng)度等于,
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.
方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次;否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位在2019年重陽(yáng)節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個(gè)景點(diǎn)其中一個(gè)去旅游.他們最終選擇的景點(diǎn)的結(jié)果如下表:
男性 | 女性 | |
甲景點(diǎn) | 20 | 10 |
乙景點(diǎn) | 5 | 15 |
(1)據(jù)此資料分析,是否有的把握認(rèn)為選擇哪個(gè)景點(diǎn)與性別有關(guān)?
(2)按照游覽不同景點(diǎn)用分層抽樣的方法,在女職工中選取5人,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人游覽的景點(diǎn)不同的概率.
附:,.
P() | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)已知曲線的極坐標(biāo)方程為,點(diǎn)是曲線與的交點(diǎn),點(diǎn)是曲線與的交點(diǎn),、均異于原點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn), 的面積為,直線過(guò)上的點(diǎn).
(1)求的方程;
(2)設(shè)為的短軸端點(diǎn),直線過(guò)點(diǎn)交于,證明:四邊形的兩條對(duì)角線的交點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海岸公路MN的北方有一個(gè)小島A(大小忽略不計(jì))盛產(chǎn)海產(chǎn)品,在公路MN的B處有一個(gè)海產(chǎn)品集散中心,點(diǎn)C在B的正西方向10處,,,計(jì)劃開(kāi)辟一條運(yùn)輸線將小島的海產(chǎn)品運(yùn)送到集散中心.現(xiàn)有兩種方案:①沿線段AB開(kāi)辟海上航線:②在海岸公路MN上選一點(diǎn)P建一個(gè)碼頭,先從海上運(yùn)到碼頭,再公路MN運(yùn)送到集散中心.已知海上運(yùn)輸、岸上運(yùn)輸費(fèi)用分別為400元/、200元/.
(1)求方案①的運(yùn)輸費(fèi)用;
(2)請(qǐng)確定P點(diǎn)的位置,使得按方案②運(yùn)送時(shí)運(yùn)輸費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).則下面結(jié)論正確的是( )
A.是奇函數(shù)B.在上為增函數(shù)
C.若,則D.若,則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com