平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都相交于兩點(diǎn),且每三個(gè)圓都不相交于同一點(diǎn),求證這n個(gè)圓把平面分成n2n+2部分.

證明:(1)當(dāng)n=1時(shí),1個(gè)圓把平面分成兩部分,而2=12-1+2,所以n=1時(shí)命題成立.

(2)假設(shè)n=k時(shí)命題成立,即k個(gè)圓把平面分成k2k+2部分.

k+1個(gè)圓把k個(gè)圓分成2k條弧,每條弧都把它們所在的區(qū)域分成兩部分,因此,比k個(gè)圓時(shí)共增加了2k部分,即k2k+2+2k=k2+k+2=(k+1)2-(k+1)+2.于是n=k+1時(shí),命題成立.

由(1)(2)知對(duì)于所有nN*,命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

31、平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都交于兩點(diǎn),且無三個(gè)圓交于一點(diǎn),求證:這n個(gè)圓將平面分成n2+n+2個(gè)部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、平面內(nèi)有n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓都沒有共同的交點(diǎn),試證明這n個(gè)圓把平面分成了n2-n+2個(gè)區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)有n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓都沒有共同的交點(diǎn),試證明這n個(gè)圓把平面分成了n2-n+2個(gè)區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都相交于兩點(diǎn),且無任何三個(gè)圓相交于一點(diǎn),求證:這n個(gè)圓將平面分成f(n)=n2-n+2個(gè)部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案