15.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}(x-1)}$的定義域是( 。
A.(1,+∞)B.(1,2]C.(2,+∞)D.(-∞,2)

分析 由根式內(nèi)部的代數(shù)式大于等于0,然后求解對數(shù)不等式得答案.

解答 解:由$lo{g}_{\frac{1}{2}}(x-1)≥0$=$lo{g}_{\frac{1}{2}}1$,得0<x-1≤1,即1<x≤2.
∴函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}(x-1)}$的定義域是(1,2].
故選:B.

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)f(x)=$\sqrt{6sin(x+\frac{π}{6})-3\sqrt{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$f(x)=\frac{1}{lg(x+1)}+\sqrt{2-x}$的定義域為( 。
A.(-1,0)∪(0,2]B.[-2,0)∪(0,2]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為( 。
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大;   
(2)若$a=2\sqrt{3}$,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當(dāng)a=2時,求A∪B
(2)當(dāng)B⊆A時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)的定義域為[-1,1],則函數(shù)$g(x)=\frac{1}{{ln({x+1})}}+f({2x})$的定義域為$[-\frac{1}{2},0)∪(0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若正數(shù)a,b滿足$\frac{1}{a}+\frac{2}=1$,則$\frac{2}{a-1}+\frac{1}{b-2}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知全集U=R,集合A=(-3,0],B=[-1,2),則圖中陰影部分所表示的集合為(-3,-1).

查看答案和解析>>

同步練習(xí)冊答案