(05年湖南卷理)(14分)
已知橢圓C:+=1(a>b>0)的左.右焦點為F1、F2,離心率為e. 直線
l:y=ex+a與x軸.y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設=λ.
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.
解析:(Ⅰ)證法一:因為A、B分別是直線l:與x軸、y軸的交點,所以A、B的坐標分別是.
所以點M的坐標是(). 由
即
證法二:因為A、B分別是直線l:與x軸、y軸的交點,所以A、B的坐標分別是設M的坐標是
所以 因為點M在橢圓上,所以
即
解得
(Ⅱ)解法一:因為PF1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,即
設點F1到l的距離為d,由
得 所以
即當△PF1F2為等腰三角形.
解法二:因為PF1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,
設點P的坐標是,
則
由|PF1|=|F1F2|得
兩邊同時除以4a2,化簡得 從而
于是. 即當時,△PF1F2為等腰三角形.
科目:高中數(shù)學 來源: 題型:
(05年湖南卷理)(14分)
已知函數(shù)f(x)=lnx,g(x)=ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1,C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年湖南卷理)設函數(shù)f (x)的圖象與直線x =a,x =b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積,已知函數(shù)y=sinnx在[0,]上的面積為(n∈N*),(i)y=sin3x在[0,]上的面積為 ;(ii)y=sin(3x-π)+1在[,]上的面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年湖南卷理)已知點P(x,y)在不等式組表示的平面區(qū)域上運動,則z=x-y的取值范圍是 ( 。
A.[-2,-1] B.[-2,1] C.[-1,2] D.[1,2]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com