已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),證明:存在x∈(2,+∞),使;
(Ⅲ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
【答案】分析:(I)求導(dǎo)數(shù)fˊ(x);在函數(shù) 的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0確定函數(shù)的單調(diào)區(qū)間,若在函數(shù)式中含字母系數(shù),往往要分類討論.
(II)由(I)知f(x)在(0,2)內(nèi)單調(diào)遞增,在(2,+∞)內(nèi)單調(diào)遞減.令.利用函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞增,得到.最后取.從而得到結(jié)論;
(III)先由f(α)=f(β)及(I)的結(jié)論知,從而f(x)在[α,β]上的最小值為f(a).再依1≤α≤2≤β≤3建立關(guān)于a的不等關(guān)系即可證得結(jié)論.
解答:解:(I)

當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:

 所以,f(x)的單調(diào)遞增區(qū)間是的單調(diào)遞減區(qū)間是
(II)證明:當(dāng)
由(I)知f(x)在(0,2)內(nèi)單調(diào)遞增,
在(2,+∞)內(nèi)單調(diào)遞減.

由于f(x)在(0,2)內(nèi)單調(diào)遞增,


所以存在x∈(2,x'),使g(x)=0,
即存在
(說明:x'的取法不唯一,只要滿足x'>2,且g(x')<0即可)
(III)證明:由f(α)=f(β)及(I)的結(jié)論知,
從而f(x)在[α,β]上的最小值為f(a).
又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.

從而
點(diǎn)評(píng):本小題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、解不等式、函數(shù)的零點(diǎn)等基礎(chǔ)知識(shí),考查運(yùn)算能力和運(yùn)用函數(shù)思想分析解決問題的能力及分類討論的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8
時(shí)
①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案