分析 設(shè)CE=x,則DF=2x,用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{AF}$,得出$\overrightarrow{AE}•\overrightarrow{AF}$關(guān)于x的函數(shù),求出此函數(shù)的值域即可.
解答 解:設(shè)CE=x(0≤x≤1),則DF=2x,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}+$(1-x)$\overrightarrow{AD}$,$\overrightarrow{AF}$=x$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∵${\overrightarrow{AB}}^{2}$=4,${\overrightarrow{AD}}^{2}$=1,$\overrightarrow{AB}•\overrightarrow{AD}$=2×1×cos$\frac{π}{3}$=1.
∴$\overrightarrow{AE}•\overrightarrow{AF}$=x${\overrightarrow{AB}}^{2}$+(x-x2+1)$\overrightarrow{AB}•\overrightarrow{AD}$+(1-x)${\overrightarrow{AD}}^{2}$=4x+(x-x2+1)+(1-x)=-x2+4x+2,
令f(x)=-x2+4x+2=-(x-2)2+6,
則f(x)在[0,1]上單調(diào)遞增,
∵f(0)=2,f(1)=5,
∴2≤f(x)≤5.
故答案為:[2,5].
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,二次函數(shù)的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,3) | B. | (1,2) | C. | (4,3) | D. | (3,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線 | B. | 圓 | C. | 橢圓 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com