1.焦點在x軸上的橢圓${x^2}-\frac{y^2}{k}=1$的離心率為$\frac{1}{2}$,則焦距為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

分析 焦點在x軸上的橢圓${x^2}-\frac{y^2}{k}=1$中:a2=1,b2=-k,且1>-k⇒c2=1+k,離心率e,e2=$\frac{{c}^{2}}{{a}^{2}}=1+k=\frac{1}{4}$⇒c2

解答 解:焦點在x軸上的橢圓${x^2}-\frac{y^2}{k}=1$中:a2=1,b2=-k,且1>-k⇒c2=1+k,
離心率e,e2=$\frac{{c}^{2}}{{a}^{2}}=1+k=\frac{1}{4}$⇒c2=1+k=$\frac{1}{4}$,⇒c=$\frac{1}{2}$,焦距為2c=1.
故選:D.

點評 本題考查了橢圓的離心率,弄清a2,b2,c2是關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.長方形ABCD中,AB=2,BC=1,F(xiàn)是線段DC上一動點,且0<FC<1.將△AFD沿AF折起,使平面AFD⊥平面ABC,在平面ABD內作DK⊥AB于K,設AK=t,則t的值可能為( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果直線y=kx-1與雙曲線x2-y2=4的右支有兩個公共點,求k的取值范圍( 。
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù) y=x2+x(-1≤x≤3}的值域是(  )
A.[0,12]B.[-$\frac{1}{4}$,12]C.[-$\frac{1}{2}$,12]D.[$\frac{3}{4}$,12]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.類比平面內正三角形的“三邊相等,三內角相等”的性質,可推出正四面體的下列哪些性質,你認為比較恰當?shù)氖牵ā 。?br />①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等; 
③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.
A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a,b,c∈R,且ac=b2,a+b+c=3,則b的取值范圍是( 。
A.[0,1]B.[-3,-1]C.[-1,1]D.[-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.以$A(-\sqrt{3},0)$為圓心,4為半徑作圓,$B(\sqrt{3},0)$,C為圓上任意一點,分別連接AC,BC,過BC的中點N作BC的垂線,交AC于點M,當點C在圓上運動時,
(1)求M點的軌跡方程,并說明它是何種曲線;
(2)求直線y=kx+1截(1)所得曲線弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.下列說法:
①若一個命題的否命題是真命題,則這個命題不一定是真命題;
②若一個命題的逆否命題是真命題,則這個命題是真命題;
③若一個命題的逆命題是真命題,則這個命題不一定是真命題;
④若一個命題的逆命題和否命題都是真命題,則這個命題一定是真命題;
其中正確的說法①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+bx+c的圖象在y軸上的截距為1,且滿足f(x+1)=f(x)+x+1,
試求:(1)f(x)的解析式;
(2)當f(x)≤7時,對應的x的取值范圍.

查看答案和解析>>

同步練習冊答案