已知定點A(4,0)到等軸雙曲線x2-y2=a2(a>0)上的點的最近距離為
5
,求此雙曲線的方程,并求此雙曲線上到點A的距離為
5
的點的坐標(biāo).
分析:設(shè)點P(x,y)是雙曲線x2-y2=a2上任意一點,表示出雙曲線上到點A的距離,配方,分類討論,可求雙曲線的方程.
解答:解:設(shè)點P(x,y)是雙曲線x2-y2=a2上任意一點,
則|AP|2=(x-4)2+y2=(x-4)2+(x2-a2)=2(x-2)2+8-a2
∵|x|≥a,
∴(1)當(dāng)0<a≤2時,
在x=2時,|AP
|
2
min
=8-a2=5
,
a2=3,a=
3

此時雙曲線方程為x2-y2=3,
雙曲線上離A距離為
5
的點為(2,1)或(2,-1)
(2)當(dāng)a>2時,在x=a時,|AP
|
2
min
=2(a-2)2+8-a2=5
,
a=4+
5

此時雙曲線方程為x2-y2=21+8
5
,
雙曲線上離A距離為
5
的點的坐標(biāo)為(4+
5
,0)
點評:本題考查雙曲線的標(biāo)準(zhǔn)方程,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知定點A(-4,0),B(0,-2),半徑為r的圓M的圓心M在線段AB的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為
3
r

(1)若r為正常數(shù),求圓M的方程;
(2)當(dāng)r變化時,是否存在定直線l與圓相切?如果存在求出定直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(4,0)和圓x2+y2=4上的動點B,點P分AB之比為2:1,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省鹽城市高三年級第三次調(diào)研考試數(shù)學(xué)試卷 題型:解答題

在平面直角坐標(biāo)系xoy中,已知定點A(-4,0),B(4,0),動點P與A、B連線低斜率之積為

(1)求點P的軌跡方程;

(2)設(shè)點P的軌跡與y軸負半軸交于點C,半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得弦長為。

    (Ⅰ)求圓M的方程;

(Ⅱ)當(dāng)r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如

果不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(4,0)和圓x2+y2=4上的動點B,點P分AB之比為2∶1,求點P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案