數(shù)學(xué)公式(n∈N*)的整數(shù)部分和小數(shù)部分分別為In和Fn,則Fn(Fn+In)的值為


  1. A.
    1
  2. B.
    2
  3. C.
    4
  4. D.
    與n有關(guān)的數(shù)
A
分析:利用二項展開式的通項公式知道展開式中所有含有非整數(shù)項的都在奇數(shù)項上,與的含有非整數(shù)項相同,通過的范圍,求出的小數(shù)部分就是本身,也就是的小數(shù)部分.
解答:我們注意到其展開式中所有含有非整數(shù)項的都在奇數(shù)項上
因為我們再看另外一個式子的展開式,
它與上面那個式子奇數(shù)項都相同,偶數(shù)項互為相反數(shù)
因此我們有為整數(shù)
因為0<<1
所以
所以就是的小數(shù)部分,就是Fn
而Fn+In=
所以Fn(Fn+In)=
=
=12n+1
=1
故選項為A
點評:本題考查二項展開式的通項公式及數(shù)學(xué)上的等價轉(zhuǎn)化的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二項展開式Cn=(
3
+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二項展開式Cn=(數(shù)學(xué)公式+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二項展開式Cn=(
3
+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州中學(xué)高三(上)12月質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二項展開式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江蘇省宿遷市泗陽中學(xué)高考數(shù)學(xué)一模試卷(實驗班)(解析版) 題型:解答題

設(shè)二項展開式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
(1)計算C1B1,C2B2的值;
(2)求CnBn

查看答案和解析>>

同步練習(xí)冊答案