中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C1的離心率為e,直線l與雙曲線C1交于A,B兩點(diǎn),線段AB中點(diǎn)M在一象限且在拋物線y2=2px(p>0)上,且M到拋物線焦點(diǎn)的距離為p,則l的斜率為( 。
分析:利用拋物線的定義,確定M的坐標(biāo),利用點(diǎn)差法將線段AB中點(diǎn)M的坐標(biāo)代入,即可求得結(jié)論.
解答:解:∵M(jìn)在拋物線y2=2px(p>0)上,且M到拋物線焦點(diǎn)的距離為p,
∴M的橫坐標(biāo)為
p
2
,∴M(
p
2
,p)
設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),A(x1,y1),B(x2,y2),則
x12
a2
-
y12
b2
=1
,
x22
a2
-
y22
b2
=1

兩式相減,并將線段AB中點(diǎn)M的坐標(biāo)代入,可得
p(x1-x2)
a2
-
2p(y1-y2)
b2
=0

y1-y2
x1-x2
=
b2
2a2

y1-y2
x1-x2
=
a2-c2
2a2
=
e2-1
2

故選A.
點(diǎn)評:本題考查雙曲線與拋物線的綜合,考查點(diǎn)差法的運(yùn)用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時,求AB的長及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為(  )
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為(  )
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年山西省孝義市高二第二次月考考試數(shù)學(xué)文卷 題型:解答題

(12分)

    已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長等于12,離心率為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓左頂點(diǎn)作直線l垂直于x軸,若動點(diǎn)M到橢圓右焦點(diǎn)的距離比它到直線l的距離小4,求點(diǎn)M的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東城區(qū)模擬 題型:解答題

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且ABl.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時,求AB的長及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案