如圖,四邊形ABCD是一個(gè)邊長(zhǎng)為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點(diǎn),現(xiàn)有一位開(kāi)發(fā)商想在平地上建造一個(gè)兩邊落在BC與CD上的長(zhǎng)方形停車(chē)場(chǎng)PQCR.
(1)若∠PAT=θ,試寫(xiě)出四邊形RPQC的面積S關(guān)于θ的函數(shù)表達(dá)式,并寫(xiě)出定義域;
(2)試求停車(chē)場(chǎng)的面積最大值.
分析:(1)延長(zhǎng)RP交AB于M,設(shè)∠PAB=θ(0°<θ<90°),則AM=90cosθ,MP=90sinθ,PQ=100-cosθ,PR=100-90sinθ.由SPQCR=PQ•PR能求出四邊形RPQC的面積S關(guān)于θ的函數(shù)表達(dá)式,并能寫(xiě)出定義域.
(2)設(shè)t=cosθ+sinθ.由0°≤θ≤90°,知t∈[1,
2
],cosθsinθ=
t2-2
2
,由此能求出停車(chē)場(chǎng)面積的最大值.
解答:解:(1)延長(zhǎng)RP交AB于M,設(shè)∠PAB=θ(0°<θ<90°),
則AM=90cosθ,MP=90sinθ,
PQ=100-cosθ,PR=100-90sinθ.
∴SPQCR=PQ•PR=(100-90cosθ)(100-90sinθ)
=10000-9000(cosθ+sinθ)+8100cosθsinθ,{θ|0≤θ≤
π
2
}.
(2)設(shè)t=cosθ+sinθ,
∵0°≤θ≤90°,
t∈[1,
2
],cosθsinθ=
t2-2
2
SPQCR=10000-9000t+8100×
t2-1
2
=4050(t-
10
9
)2+950

∴當(dāng)t=
2
時(shí),SPQCR有最大值14050-9000
2

答:長(zhǎng)方形停車(chē)場(chǎng)PQCR面積的最大值為14050-9000
2
平方米.
點(diǎn)評(píng):本題考查函數(shù)在生產(chǎn)實(shí)際中的具體運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分析數(shù)量間的相互關(guān)系,合理地建立方程.易錯(cuò)點(diǎn)是忽視數(shù)學(xué)表達(dá)式在生產(chǎn)實(shí)際中的定義域的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長(zhǎng)為a的正方形,點(diǎn)E是A′A的中點(diǎn),A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點(diǎn).
(1)求點(diǎn)C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個(gè)外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案