已知三個點,其中為常數(shù)。若,則的夾角為(    )

A.      B、      C、        D、

 

【答案】

D

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
平行,并且點列{Bn}在斜率為6的同一直線上,n=1,2,3,….
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)試用a1,b1與n表示an(n≥2);
(3)設(shè)a1=a,b1=-a,是否存在這樣的實數(shù)a,使得在a6與a7兩項中至少有一項是數(shù)列{an}的最小項?若存在,請求出實數(shù)a的取值范圍;若不存在,請說明理由;
(4)若a1=b1=3,對于區(qū)間[0,1]上的任意λ,總存在不小于2的自然數(shù)k,當(dāng)n≥k時,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•豐臺區(qū)一模)在平面直角坐標(biāo)系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
共線,且點列{Bn}在斜率為6的直線上,n=1,2,3,….
(Ⅰ)證明數(shù)列{bn}是等差數(shù)列;
(Ⅱ)試用a1,b1與n表示an(n≥2);
(Ⅲ)設(shè)a1=a,b1=-a,在a6與a7兩項中至少有一項是數(shù)列{an}的最小項,試求實數(shù) a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知三個點列,其中,滿足向量與向量共線,且點列在方向向量為的直線上,。

(1)       試用表示;

(2)       若兩項中至少有一項是的最小值,試求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年哈師大附中理)      在平面直角坐標(biāo)系中,已知三個點列,其中,滿足向量與向量共線,且點列在方向向量為的直線上,

(1)       試用表示;

(2)       若兩項中至少有一項是的最小值,試求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案