如圖,線段y軸上一點所在直線的斜率為,兩端點、y軸的距離之差為.

(Ⅰ)求出以y軸為對稱軸,過、三點的拋物線方程;

(Ⅱ)過拋物線的焦點作動弦,過、兩點分別作拋物線的切線,設其交點為,求點的軌跡方程,并求出的值.

 

【答案】

(Ⅰ)拋物線方程為 ; (Ⅱ)  。

【解析】(I) 設所在直線方程為,拋物線方程為

, ,,再讓直線AB的方程與拋物線的方程聯(lián)立,借助韋達定理建立關(guān)于p的方程,求出p值,確定出拋物線的方程.

(II) 設,,然后利用導數(shù)求出經(jīng)過C、D的切線方程,求出交點M的坐標,設的直線方程為,代入,根據(jù)是方程的兩個根,確定點M的軌跡方程以后,解決此問題才有了正確的出口.

(Ⅰ)設所在直線方程為,拋物線方程為,且,不妨設,      即

代入 

        故所求拋物線方程為 ---------4分

 (Ⅱ)設,

過拋物線上、兩點的切線方程分別是,

兩條切線的交點的坐標為

的直線方程為,代入

 故的坐標為 點的軌跡為---------------8分

   

 

          -----------------------------------12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了考察冰川的融化狀況,一支科考隊在某冰川上相距8km的A,B兩點各建一個考察基地.視冰川面為平面形,以過A,B兩點的直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標系(圖).在直線x=2的右側(cè),考察范圍為到點B的距離不超過
6
5
5
km的區(qū)域;在直線x=2的左側(cè),考察范圍為到A,B兩點的距離之和不超過4
5
km的區(qū)域.
(Ⅰ)求考察區(qū)域邊界曲線的方程;
(Ⅱ)如圖所示,設線段P1P2,P2P3是冰川的部分邊界線(不考慮其他邊界),當冰川融化時,邊界線沿與其垂直的方向朝考察區(qū)域平行移動,第一年移動0.2km,以后每年移動的距離為前一年的2倍,求冰川邊界線移動到考察區(qū)域所需的最短時間.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)如圖,在平面直角坐標系xoy中,設點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B為半橢圓
y24
+x2=1(y≥0)
的兩個頂點,F(xiàn)為上焦點,將半橢圓和線段AB合在一起稱為曲線C.
(1)求△ABF的外接圓圓心;
(2)過焦點F的直線L與曲線C交于P、Q兩點,若|PQ|=2,求所有滿足條件的直線L;
(3)對于一般的封閉曲線,曲線上任意兩點距離的最大值稱為該曲線的“直徑”.如圓的“直徑”就是通常的直徑,橢圓的“直徑”就是長軸的長.求該曲線C的“直徑”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“點動成線,線動成面,面動成體”.如圖,x軸上有一條單位長度的線段AB,沿著與其垂直的y軸方向平移一個單位長度,線段掃過的區(qū)域形成一個二維方體(正方形ABCD),再把正方形沿著與其所在的平面垂直的z軸方向平移一個單位長度,則正方形掃過的區(qū)域形成一個三維方體(正方體ABCD-A1B1C1D1).請你設想存在四維空間,將正方體向第四個維度平移得到四維方體,若一個四維方體有m個頂點,n條棱,P個面,則n,m,p的值分別為
16,32,24
16,32,24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

同步練習冊答案