設集合M={m|m=7n+2n,n∈N*,且m<200},則集合M中所有元素的和為
 
分析:根據(jù)m<200求得n的范圍,進而可知集合M中所有元素的和由等差數(shù)列和等比數(shù)列構(gòu)成,進而根據(jù)等差數(shù)列和等比數(shù)列的求和公式求得前7項的和.
解答:解:∵m=7n+2n<200
∴n≤7,n∈N*
S7=7
7
i=1
i+(2+22+…+27)=450

故答案為450
點評:本題主要考查了數(shù)列的求和問題.解題的關(guān)鍵是把不規(guī)則的數(shù)列分成等比和等差數(shù)列,進而利用等差和等比數(shù)列的性質(zhì)得到答案.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn
1
2
an2和an的等差中項
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問:這樣的正整數(shù)m共有多少個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,數(shù)列{an}的前n項和Sn
(1)求an,Sn;           
(2)令bn=
1
an2-1
,(n∈N*)
,求證數(shù)列{bn}的前n項和Tn
1
4
;
(3)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式4Sn-8047>an2恒成立,這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶一模)設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,2
Sn
是an+2 和an的等比中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

同步練習冊答案