設(shè)f(x)=(a-x)|3a-x|,a為常數(shù),下列結(jié)論中正確的是(    )

A.當(dāng)x=2a時(shí),f(x)取最小值-a2

B.當(dāng)x=3a時(shí),f(x)取最大值0

C.f(x)無最大值也無最小值

D.f(x)有最小值,但無最大值

解析:討論3a-x的符號(hào).

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+a)=-
1
x
-1(a∈R)

(Ⅰ)若f(x)的定義域?yàn)椋?∞,a)∪(a,+∞),求證:f(x)+f(2a-x)=-2對(duì)定義域內(nèi)所有x都成立;
(Ⅱ)若f(x)的定義域?yàn)?span id="d5tz1jj" class="MathJye">[a+
1
2
,a+1]時(shí),求f(x)的值域;
(Ⅲ)若f(x)的定義域?yàn)椋?∞,a)∪(a,+∞),設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,當(dāng)a≥
1
2
時(shí),求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
π
3
]時(shí),函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移
π
12
個(gè)單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)有如下定義:
定義(1):設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義(2):設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
己知f(x)=x3-3x2+ax+2在x=-1處取得極大值.請(qǐng)回答下列問題:
(1)當(dāng)x∈[0,4]時(shí),求f(x)的最小值和最大值;
(2)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo),并檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N),且f(2)=2,f(3)<3,
且f(x)的圖象按向量
e
=(-1,0)
平移后得到的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求a、b、c的值;
(2)設(shè)0<|x|<1,0<|t|≤1,求證不等式|t+x|-|t-x|<|f(tx+1)|;
(3)已知x>0,n∈N*,求證不等式[f(x+1)]n-f(xn+1)≥2n-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案