設(shè)全集U=R,集合A={x∈R|x2-2x<0},B={y|y=ex+1,x∈R},則A∩B=
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A中不等式的解集確定出A,求出B中函數(shù)的值域確定出B,找出A與B的交集即可.
解答: 解:由A中的不等式變形得:x(x-2)<0,
解得:0<x<2,即A=(0,2),
由B中y=ex+1≥1,得到B=[1,+∞),
則A∩B=[1,2).
故答案為:[1,2)
點(diǎn)評:此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有紅、藍(lán)、黃、綠四種顏色的球各6個,每種顏色的6個球分別標(biāo)有數(shù)字1、2、3、4、5、6,從中任取3個標(biāo)號不同的球,這3個顏色互不相同且所標(biāo)數(shù)字互不相鄰的取法種數(shù)為(  )
A、80B、84C、96D、104

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為
x=5+at
y=-1-t
 (t
為參數(shù)),圓C的極坐標(biāo)方程為ρ=2
2
cos(θ-
π
4
)

(Ⅰ)若圓C關(guān)于直線l對稱,求a的值;
(Ⅱ)若圓C與直線l相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+
5
2
x2+ax+b(a,b為常數(shù)),其圖象是曲線C.
(1)當(dāng)a=-2時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實(shí)數(shù)b的取值范圍;
(3)已知點(diǎn)A為曲線C上的動點(diǎn),在點(diǎn)A處作曲線C的切線l1與曲線C交于另一點(diǎn)B,在點(diǎn)B處作曲線C的切線l2,設(shè)切線l1,l2的斜率分別為k1,k2.問:是否存在常數(shù)λ,使得k2=λk1?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2Sn
(-2)n(n+1)
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時,觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2
,
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2

,…
可以推測,A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E為垂足,則PE的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二項式(
x
+
a
3x
n展開式的二項式系數(shù)之和為32,常數(shù)項為80,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別a,b,c,若a2+b2=
1
2
c2.則直線ax-by+c=0被圓x2+y2=9所截得的弦長為( 。
A、2
7
B、3
7
C、2
10
D、3
10

查看答案和解析>>

同步練習(xí)冊答案