已知z∈C,則命題“z是純虛數(shù)”是命題“數(shù)學(xué)公式”的________條件.

充分不必要
分析:先判斷充分性成立,即當(dāng)z是純虛數(shù)時,,反之z可以取0,故可的結(jié)論.
解答:當(dāng)z是純虛數(shù)時,不妨設(shè)z=bi(b≠0),則
反之,,則z可以取0
故命題“z是純虛數(shù)”是命題“”的充分不必要條件
故答案為充分不必要.
點評:本題的考點是必要條件、充分條件與充要條件的判斷.主要考查利用定義判斷必要條件、充分條件與充要條件,關(guān)鍵是利用復(fù)數(shù)的概念化簡.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是
2
5
5

則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z∈C,則命題“z是純虛數(shù)”是命題“
z21-z2
∈R
”的
充分不必要
充分不必要
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2;
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是數(shù)學(xué)公式
則其中正確命題的序號是


  1. A.
    (1)、(4)
  2. B.
    (1)、(3)
  3. C.
    (2)、(3)、(4)
  4. D.
    (3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是
則其中正確命題的序號是( )
A.(1)、(4)
B.(1)、(3)
C.(2)、(3)、(4)
D.(3)、(4)

查看答案和解析>>

同步練習(xí)冊答案