設(shè)(x2+
1
2x
)n
的展開式中含有非零常數(shù)項(xiàng),則正整數(shù)n的最小值為______.
展開式的通項(xiàng)為Tr+1=(
1
2
)
r
Crn
x2n-3r

令2n-3r=0據(jù)題意此方程有解
n=
3r
2

當(dāng)r=2時(shí),n最小為3
故答案為:3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+
1
2
x)n(n∈N*)
展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…,an(x),an+1(x),其中ak(x)=
C
k-1
n
(
1
2
x)k-1,k=1,2,3,…,n+1

設(shè)F(x)=a1(x)+2a2(x)+3a3(x)+…+nan(x)+(n+1)an+1(x)
(1)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(2)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差大于0,且a2,a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
1-bn2
(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,證明:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-
1
2
bn

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷n≥4時(shí)
1
bn
與Sn+1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)設(shè)(x2+
12x
)n
的展開式中含有非零常數(shù)項(xiàng),則正整數(shù)n的最小值為
3
3

查看答案和解析>>

同步練習(xí)冊答案