已知,(θ∈[0,π]),則的取值范圍是( )
A.[1,]
B.[,2]
C.[,]
D.[,3]
【答案】分析:由已知,(θ∈[0,π]),利用向量的模用坐標(biāo)表示的式子寫出關(guān)于角θ的三角函數(shù)式,利用三角函數(shù)在定義域內(nèi)求出值域,即可求解.
解答:解:已知,(θ∈[0,π]),
==,

=2(1-cosθ)(1+sinθ)+2(1+cosθ)(1-sinθ)
=2(2-sin2θ)(θ∈[0,π]),
.∴|
故選:C.
點(diǎn)評(píng):此題考查了已知兩向量的坐標(biāo),利用向量的模用坐標(biāo)表示的式子,即可求出向量模的式子,還考查了三角函數(shù)已知角的范圍求值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知a<0,關(guān)于x的不等式ax2-2(a+1)x+4>0的解集是
(
2
a
,2)
(
2
a
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•金華模擬)已知a>0,b>0,a、b的等比中項(xiàng)是1,且m=b+
1
a
,n=a+
1
b
,則m+n的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)已知a>0,函數(shù)f(x)=ax2-lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
1
8
時(shí),證明:方程f(x)=f(
2
3
)
在區(qū)間(2,+∞)上有唯一解;
(3)若存在均屬于區(qū)間[1,3]的α,β且β-α≥1,使f(α)=f(β),證明:
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,
1
b
-
1
a
>1,求證:
1+a
1
1-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={0,1},N={y|y=x2+1,x∈M},則M∩N=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案