(2013•臨沂二模)將函數(shù)y=sinx的圖象向右平移
π
2
個單位長度,再向上平移1個單位長度,所得的圖象對應的函數(shù)解析式為( 。
分析:將函數(shù)y=sinx的圖象向右平移
π
2
個長度單位得到y(tǒng)=sin(x-
π
2
)=-cosx的圖象,在向上平移1個單位長度,得到y(tǒng)=-cosx+1的圖象
解答:解:將函數(shù)y=sinx的圖象向右平移
π
2
個長度單位得到y(tǒng)=sin(x-
π
2
)=-cosx的圖象;
再將y=-cosx的圖象向上平移1個長度單位得到y(tǒng)=-cosx+1的圖象.
故所得圖象的函數(shù)解析式為y=-cosx+1.
故選C.
點評:本題考查三角函數(shù)圖象的平移,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)已知函數(shù)f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x0∈(1,+∞),使g(x0)=g(
1
2
)
;
(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)函數(shù)y=esinx(-π≤x≤π)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+1)=-f(x),當-1≤x<1時,f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少6個零點,則a取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函數(shù)f(x)=
u
v
-
1
2
的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)某班共有52人,現(xiàn)根據(jù)學生的學號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本,已知3號、29號、42號同學在樣本中,那么樣本中還有一個同學的學號是( 。

查看答案和解析>>

同步練習冊答案