求數(shù)列的前n項和   
【答案】分析:數(shù)列的通項=-進(jìn)而通過化簡求得前n項和.
解答:解:=++…+-=
故答案為:
點(diǎn)評:本題主要考查了數(shù)列的求和問題.利用了拆項求和的辦法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列的前n項和:1+1,
1
a
+4,
1
a2
+7,…,
1
an-1
+3n-2,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.
(1)求數(shù)列{an}的通項公式an
(2)求數(shù)列的前n項和Sn的最大值及相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列﹛an﹜滿足a4=20,a10=8
(I)求數(shù)列﹛an﹜的通項公式;
(II)求數(shù)列的前n項和Sn,指出當(dāng)n為多少時Sn取最大值,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等差數(shù)列{an}的前n項和為Sn,其中都是數(shù)列{an}中滿足ah-ak=ak-am的任意項.
(I)證明:m+h=2k;
(II)證明:Sm•Sh≤Sk2;
(III)若
Sm
、
Sk
Sh
也在等差數(shù)列,且a1=a,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知數(shù)列{bn},若存在正整數(shù)T,對一切n∈N*都有bn+r=bn,則稱數(shù)列{bn}為周期數(shù)列,T是它的一個周期.例如:
數(shù)列a,a,a,a,…①可看作周期為1的數(shù)列;
數(shù)列a,b,a,b,…②可看作周期為2的數(shù)列;
數(shù)列a,b,c,a,b,c,…③可看作周期為3的數(shù)列…
(1)對于數(shù)列②,它的一個通項公式可以是an =
a   n為正奇數(shù)
b    n為正偶數(shù)
,試再寫出該數(shù)列的一個通項公式;
(2)求數(shù)列③的前n項和Sn
(3)在數(shù)列③中,若a=2,b=
1
2
,c=-1,且它有一個形如bn=Asin(ωn+φ)+B的通項公式,其中A、B、ω、φ均為實數(shù),A>0,ω>0,|φ|<
π
2
,求該數(shù)列的一個通項公式bn

查看答案和解析>>

同步練習(xí)冊答案