設(shè){xn}是各項(xiàng)都為正數(shù)的等比數(shù)列,{yn}是等差數(shù)列,且x1=y1=1,x3+y5=13,x5+y3=21.
(1)求{xn},{yn}的通項(xiàng)公式.
(2)若i,j均為正整數(shù),且1≤i≤j≤n,求所有可能乘積xi•yj的和S.
分析:(1)直接根據(jù)x3+y5=13,x5+y3=21列出關(guān)于公差和公比的等式,解方程求出公差和公比,即可求出通項(xiàng)公式.
(2)先根據(jù)條件得到S=x1•y1+(x1+x2)•y2+…+(x1+x2+…+xn)•yn;再求出(x1+x2+…+xn)•yn的通項(xiàng);最后利用錯(cuò)位相減以及裂項(xiàng)求和法求出結(jié)果.
解答:解:(1)設(shè){xn}的公比為q(q>0),{yn}的公差為d,
1+2d+q4=21
1+4d+q2=13
得d=2,q=2,
所以:xn=2n-1,yn=2n-1.
(2)由題意S=x1•y1+(x1+x2)•y2+…+(x1+x2+…+xn)•yn
研究通項(xiàng):
(x1+x2+…+xn)•yn=(1+2+…2n-1)(2n-1)=
1-2n
1-2
•(2n-1)
=(2n-1)•2n-(2n-1),

∴S=[1•2+3•22+…+(2n-1)•2n]-
n(1+2n-1)
2

令Tn=1•2+3•22+…+(2n-1)•2n;
2Tn=1•22+3•23+…+(2n-1)•2n+1
由錯(cuò)位相減法得:Tn=(2n-3)•2n+1+6,
∴S=(2n-3)•2n+1+6-n2
點(diǎn)評(píng):本題主要考察等差數(shù)列和等比數(shù)列的綜合知識(shí).其中涉及到數(shù)列求和的錯(cuò)位相減法以及分組求和法,這是數(shù)列求和的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)在x=
t+2
2
處取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表達(dá)式;
(2)若任意實(shí)數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項(xiàng)式,n∈N+),試用t表示an和bn
(3)設(shè)圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省2009屆高三教學(xué)質(zhì)量檢測(cè)模擬試題(一)、數(shù)學(xué) 題型:044

已知二次函數(shù)滿足以下條件:

①圖像關(guān)于直線x=對(duì)稱;②f(1)=0;③其圖像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表達(dá)式;

(Ⅱ)若數(shù)列{an},{bn}對(duì)任意的實(shí)數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(shù)(x)是定義在實(shí)數(shù)集R上的一個(gè)函數(shù),求數(shù)列{an},{bn}的通項(xiàng)公式.

(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項(xiàng)都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州地區(qū)七校聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè){xn}是各項(xiàng)都為正數(shù)的等比數(shù)列,{yn}是等差數(shù)列,且x1=y1=1,x3+y5=13,x5+y3=21.
(1)求{xn},{yn}的通項(xiàng)公式.
(2)若i,j均為正整數(shù),且1≤i≤j≤n,求所有可能乘積xi•yj的和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省雅安中學(xué)09-10學(xué)年高二上學(xué)期期中考試 題型:解答題

 已知二次函數(shù)y=f(x)在x= 處取得最小值- (t﹥0),f(1)=0, (1)求y=f(x)的表達(dá)式;(2)若任意實(shí)數(shù)x都滿足等式f(x)g(x)+anx+bn=xn+1 (g(x)為多項(xiàng)式,n∈N+)試用t表示an和bn;(3)設(shè)圓Cn的方程為(x-an2+(y-bn2=r ,圓Cn與Cn+1 外切(n=1,2,3…),{rn}是各項(xiàng)都為正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,sn。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案