20.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,2),則$\overrightarrow{a}$+2$\overrightarrow$=(  )
A.(3,4)B.(-3,2)C.(-1,0)D.(5,-6)

分析 根據(jù)向量的坐標(biāo)運(yùn)算的法則計(jì)算即可.

解答 解:平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,2),則$\overrightarrow{a}$+2$\overrightarrow$=(1,-2)+2(-2,2)=(1-4,-2+4)=(-3,2),
故選:B.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面內(nèi),已知四邊形ABCD,CD⊥AD,∠CBD=$\frac{π}{12}$,AD=5,AB=7,且cos2∠ADB+3cos∠ADB=1,則BC的長(zhǎng)為4$\sqrt{6}$-4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將函數(shù)f(x)=sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{8}$個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式為g(x)=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.i是虛數(shù)單位,計(jì)算$\frac{3\sqrt{3}-i}{\sqrt{3}+i}$的結(jié)果為2-$\sqrt{3}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若不等式a2+b2+2>λ(a+b)對(duì)任意正數(shù)a,b恒成立,實(shí)數(shù)λ的取值范圍是(  )
A.$({-∞,\frac{1}{2}})$B.(-∞,1)C.(-∞,2)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知關(guān)于x的不等式ax2-x+b≥0的解集為[-2,1],則關(guān)于x的不等式bx2-x+a≤0的解集為( 。
A.[-1,2]B.[-1,$\frac{1}{2}$]C.[-$\frac{1}{2}$,1]D.[-1,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若函數(shù)y=$\frac{9x-1}{a{x}^{2}+4ax+3}$的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|kx-2|+|kx-k|,g(x)=x+3.
(1)當(dāng)k=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若對(duì)任意的x∈R,f(x)≥4都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( 。
A.$f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1$B.$f(x)=lg\sqrt{x}+lg\sqrt{1-x},g(x)=lg\sqrt{x(1-x)}$
C.$f(x)=\root{3}{x^3},g(x)=x+1$D.$f(x)={(\sqrt{x})^2},g(x)=x$

查看答案和解析>>

同步練習(xí)冊(cè)答案