【題目】某跨國飲料公司在對全世界所有人均GDP(即人均純收入)在千美元的地區(qū)銷售該公司A飲料的情況調(diào)查時發(fā)現(xiàn):該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減.

1)下列幾個模擬函數(shù):①;②;③;④x表示人均GDP,單位:千美元,y表示年人均A飲料的銷售量,單位:L.用哪個模擬函數(shù)來描述人均A飲料銷售量與地區(qū)的人均GDP關(guān)系更合適?說明理由;

2)若人均GDP1千美元時,年人均A飲料的銷售量為,人均4千美元時,年人均A飲料的銷售量為,把(1)中你所選的模擬函數(shù)求出來,并求出各個地區(qū)年人均A飲料的銷售量最多是多少.

【答案】(1) 用①來模擬比較合適,見解析(2) .

【解析】

1)根據(jù)該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減結(jié)合幾個函數(shù)的增長特征即可得出答案.

2)將、代入解析式,利用待定系數(shù)法即可求解.

: 1)用①來模擬比較合適.因為該飲料在人均處于中等的地區(qū)銷售量最多,

然后向兩邊遞減,而②③④表示的函數(shù)均是單調(diào)函數(shù),所以②③④都不合適,

故用①來模擬比較合適.

2)因為人均1千美元時,年人均A飲料的銷售量為

人均4千美元時,年人均A飲料的銷售量為,所以把,;

,代入中,得

解得所以函數(shù)的解析式為.

因為,

所以當時,年人均A飲料的銷售量最多,最多是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.

學(xué)生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則

A2號學(xué)生進入30秒跳繩決賽

B5號學(xué)生進入30秒跳繩決賽

C8號學(xué)生進入30秒跳繩決賽

D9號學(xué)生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù).

(Ⅰ)求的最小值及取得最小值時的取值范圍;

(Ⅱ)若集合,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2,

1)求復(fù)數(shù);

2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點也是橢圓的一個焦點,點在橢圓短軸上,且.

(1)求橢圓的方程;

(2)設(shè)為橢圓上的一個不在軸上的動點,為坐標原點,過橢圓的右焦點的平行線,交曲線兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,準線為上一點,直線與拋物線交于兩點,若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)記的最大值為,若,求證:

(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:的極小值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)某天時間與水深(單位:米)的關(guān)系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

1)請用一個函數(shù)近似地描述這個港口的水深y與時間t的函數(shù)關(guān)系;

2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5.

①如果該船是旅游船,1:00進港,希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

②如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

同步練習冊答案