已知數(shù)列{an}的通項為an=(
2
3
)n-1•[(
2
3
)
n-1
-1]
,下列表述正確的是( 。
A.最大項為0,最小項為-
20
81
B.最大項為0,最小項不存在
C.最大項不存在,最小項為-
20
81
D.最大項為0,最小項為a4
a1=(
2
3
1-1×[(
2
3
1-1-1]=1×(1-1)=0
∵當n>1時,(
2
3
n-1<1,(
2
3
n-1-1<0
∴an最大項為a1=0
a2=(
2
3
2-1×[(
2
3
2-1-1]=
2
3
×(
2
3
-1)=-
2
9

a3=(
2
3
3-1×[(
2
3
3-1-1]=
4
9
×(
4
9
-1)=-
20
81

a4=(
2
3
4-1×[(
2
3
4-1-1]=
8
27
×(
8
27
-1)=-
152
729

an+1-an=(
2
3
n+1-1×[(
2
3
n+1-1-1]-(
2
3
n-1×[(
2
3
n-1-1]
=(
2
3
n-1×
3n-1-2n
3n

當n≥3時,an+1-an>0
n<3時  an+1-an<0
最小項為a3=-
20
81

故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1,Sn為數(shù)列{an}的前n項和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
1
n+1
+
n
求它的前n項的和.

查看答案和解析>>

同步練習冊答案