(本小題14分)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動,R是線段PF與x軸的交點(diǎn), 過R、P分別作直線、,使 .

 (1) 求動點(diǎn)的軌跡的方程;

(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn).

 

【答案】

解:(1) . (2)見解析.

【解析】

試題分析:(Ⅰ)先判斷RQ是線段FP的垂直平分線,從而可得動點(diǎn)Q的軌跡C是以F為焦點(diǎn),l為準(zhǔn)線的拋物線;

(Ⅱ)設(shè)M(m,-p),兩切點(diǎn)為A(x1,y1),B(x2,y2),求出切線方程,從而可得x1,x2為方程x2-2mx-4p2=0的兩根,進(jìn)一步可得直線AB的方程,即可得到直線恒過定點(diǎn)(0,p);

解:(1)依題意知,點(diǎn)是線段的中點(diǎn),且,

是線段的垂直平分線. ∴

故動點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,

其方程為:

(2)設(shè),兩切點(diǎn)為, 

∴兩條切線方程為xx=2p(y+y)    ① 

xx=2p(y+y)   ②

對于方程①,代入點(diǎn), 又, 整理得:, 同理對方程②有,  即為方程的兩根.

  ③

設(shè)直線的斜率為,

所以直線的方程為,展開得:,代入③得:,  ∴直線恒過定點(diǎn).

考點(diǎn):本題主要考查了拋物線的定義,考查直線恒過定點(diǎn),考查直線的向量,,屬于中檔題.

點(diǎn)評:解決該試題的關(guān)鍵是正確運(yùn)用圓錐曲線的定義和韋達(dá)定理,來表示根與系數(shù)的關(guān)系的運(yùn)用。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省肇慶市高三復(fù)習(xí)必修五綜合練習(xí) 題型:解答題

(本小題14分)如圖所示,L是海面上一條南北方向的海防警戒線,在L上點(diǎn)A處有一個水聲監(jiān)測點(diǎn),另兩個監(jiān)測點(diǎn)B,C分別在A的正東方20 km處和54 km處.某時刻,監(jiān)測點(diǎn)B收到發(fā)自靜止目標(biāo)P的一個聲波,8s后監(jiān)測點(diǎn)A,20 s后監(jiān)測點(diǎn)C相繼收到這一信號.在當(dāng)時氣象條件下,聲波在水中的傳播速度是1. 5 km/s.

 

 

(1)設(shè)A到P的距離為 km,用分別表示B、C到P 的距離,并求值;

(2)求靜止目標(biāo)P到海防警戒線L的距離(結(jié)果精確到0.01 km)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題14分)

如圖,已知的面積為14,、分別為邊、上的點(diǎn),且,交于。設(shè)存在使,  。  

(1)求   

(2)用,表示

(3)求的面積

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題14分)如圖所示,在四棱錐中,底面為矩形,側(cè)棱底面,的中點(diǎn).

(1)求直線所成角的余弦值;

(2)在側(cè)面內(nèi)找一點(diǎn),使平面,并分別求出點(diǎn)的距離.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三?荚囄目茢(shù)學(xué)試題 題型:解答題

(本小題14分)如圖,三棱錐中,平面,

,,分別是

的動點(diǎn),且平面,二面角.

(1)求證:平面

(2)若,求直線與平面所成角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州市高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題14分)

如圖,在直三棱柱中,,點(diǎn)在邊上,。

(1)求證:平面

(2)如果點(diǎn)的中點(diǎn),求證:平面 .

 

查看答案和解析>>

同步練習(xí)冊答案