如圖所示,圓O1和圓O2的半徑都等于1,O1O2=4,過動(dòng)點(diǎn)P分別作圓O1、圓O2的切線PM、PN(M、N為切點(diǎn)),使得PMPN.試建立平面直角坐標(biāo)系,并求動(dòng)點(diǎn)P的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)如圖所示,AF、DE分別是⊙O和⊙O1的直徑,AD與兩圓所在平面都垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD.
①求二面角 B-AD-F 的大; 
②求異面直線BD與EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省大連市2012屆高三雙基測(cè)試數(shù)學(xué)理科試題 題型:044

如圖所示,已知⊙O1和⊙O2相交于A、B兩點(diǎn),過A點(diǎn)作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.

(Ⅰ)求證:AD∥EC;

(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省大連市2012屆高三雙基測(cè)試數(shù)學(xué)文科試題 題型:044

如圖所示,已知⊙O1和⊙O2相交于A、B兩點(diǎn),過A點(diǎn)作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.

(Ⅰ)求證:AD∥EC;

(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓O1、O2的半徑分別為r1、r2,圓心距|O1O2|=2,動(dòng)圓C與圓O1、O2都相切,圓心C的軌跡為如圖所示的兩條雙曲線,兩條雙曲線的離心率分別為e1、e2,則的值為

A.r1+r2                                       B.r1和r2中的較大者

C.r1和r2中的較小者                           D.|r1-r2|

查看答案和解析>>

同步練習(xí)冊(cè)答案