(本小題共12分)

(普通高中做)

     如圖, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,點DAB的中點,

   (I)求證:ACBC1

   (II)求證:AC 1//平面CDB1;

   (III)求異面直線 AC1B1C所成角的余弦值.

 

 

 

 

 

【答案】

【解析】解:(I)直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4AB=5,

∴ AC⊥BC,且BC1在平面ABC內(nèi)的射影為BC,∴ AC⊥BC1………4分

(II)設(shè)CB1與C1B的交點為E,連結(jié)DE,∵ D是AB的中點,E是BC1的中點,∴ DE//AC1,

∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;………8分

(III)∵ DE//AC1,∴ ∠CED為AC1與B1C所成的角,

在△CED中,ED=AC 1=,CD=AB=,CE=CB1=2,

,

∴ 異面直線 AC1B1C所成角的余弦值.………12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

. (本小題共12分)已知橢圓E:的焦點坐標為),點M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標原點,⊙的任意一條切線與橢圓E有兩個交點,,求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題

(本小題共12分)如圖,已知⊥平面,,是正三角形,,且的中點

 

 

(1)求證:∥平面;

(2)求證:平面BCE⊥平面

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題

(本小題共12分)某中學的高二(1)班男同學有名,女同學有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.

(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);

(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水市高三上學期第一階段性考試理科數(shù)學卷 題型:解答題

(本小題共12分)

如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=

(1)求證:BC1//平面A1DC;

(2)求二面角D—A1C—A的大小

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆黑龍江省高一上學期期末考試理科數(shù)學 題型:解答題

(本小題共12分)已知函數(shù)

(1)求函數(shù)圖象的對稱中心

(2)已知,求證:.

(3)求的值.

 

查看答案和解析>>

同步練習冊答案