復(fù)數(shù)z=i3-
2i
1+i
,在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第四象限D、第三象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由條件利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運(yùn)算性質(zhì),化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,得出結(jié)論.
解答: 解:復(fù)數(shù)z=i3-
2i
1+i
=-i-
2i(1-i)
(1+i)91-i)
=-i-
2+2i
2
=-i-1-i=-1-2i,
它在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-2),
故選:D.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
c
=
a
-(
a
2
a
b
b
,則向量
a
c
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}的通項(xiàng)公式分別是an=a+(n-1)d,bn=a-(n-1)d,若
a1+a3+b4≤6
b3≥-8
a6+b5≥4
,則a5+b6的最大值為( 。
A、4B、-4C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x+3x-9的零點(diǎn)一定位于下列哪個(gè)區(qū)間( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是統(tǒng)計(jì)該6名隊(duì)員在最近三場(chǎng)比賽中投進(jìn)的三分球總數(shù)的程序框圖,則圖中判斷框應(yīng)填( 。
A、i≤5或i<6
B、i≤6或i<7
C、i≥6或i>5
D、i≥5或i>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在R上可導(dǎo),且滿足不等式
f(x)
x
<-f′(x)lnx恒成立,且常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是( 。
A、f(b)lna<f(a)lnb
B、f(a)lna>f(b)lnb
C、f(a)lna<f(b)lnb
D、f(b)lna>f(a)lnb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
1
2
x2-ln(2x-3)的單調(diào)遞減區(qū)間為( 。
A、(-∞,-
1
2
B、(2,+∞)
C、(
1
2
,2)
D、(
3
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充內(nèi)容為( 。
A、i>=0B、i<20
C、i>=0D、i=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足條件
x+y≥0
x-y+1≥0
0≤x≤1
,則z=x-2y的最小值為( 。
A、5B、-3C、2D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案