已知x,y滿足約束條件
x-y≥0
2x-y-2≤0
x≥o
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值是4,則ab的最大值是( 。
A、4
B、2
2
C、1
D、
2
2
分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件
x-y≥0
2x-y-2≤0
x≥o
,畫出滿足約束條件的可行域,再根據(jù)目標(biāo)函數(shù)z=abx+y(a>0,b>0)的最大值為4,求出a,b的關(guān)系式,再利用基本不等式求出ab的最小值.
解答:解:滿足約束條件
x-y≥0
2x-y-2≤0
x≥o
的區(qū)域是一個三角形,如圖精英家教網(wǎng)
3個頂點是(0,0),(1,0),( 2,2),
由圖易得目標(biāo)函數(shù)在(2,2)取最大值4,
即2a+2b=4
∴a+b=2≥2
ab
,在a=b=1時是等號成立,
∴ab的最小值為1.
故選C.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y 滿足約束條
x-2y≤24
3x+2y≥36
y≥1
則z=2x-3y的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:選擇題

已知向量,且,若變量x,y滿足約束條,則z的最大值為                            

A.1             B.2         C.3            D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年河北省唐山市高二(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

已知x,y 滿足約束條則z=2x-3y的最大值   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條的最小值是                                 

A.9                            B.20                          C.                        D.

查看答案和解析>>

同步練習(xí)冊答案