集合由滿(mǎn)足如下條件的函數(shù)組成:當(dāng)時(shí),有 ,對(duì)于兩個(gè)函數(shù)

以下關(guān)系中成立的是                                                 (    )

                   

                 

D.

解析:

,取,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A是由在[1,4]上有意義且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合;
①對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對(duì)任意的x1,x2∈[1,2]都有|φ(2x1)-φ(2x2)|=L|x1-x2|
(1)設(shè)φ(x)=
2x+15
18
,x∈[1,2]
,證明:φ(x)∈A;
(2)設(shè)φ(x)=
x2+15
18
,x∈[1,2]
,是否存在設(shè)x0∈(1,2),使得x0=φ(2x0),如存在,求出所有的x0,如不存在請(qǐng)說(shuō)明理由!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是由滿(mǎn)足下列條件的函數(shù)f(x)構(gòu)成的集合:(1)方程f(x)-x=0有實(shí)數(shù)解;(2)函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿(mǎn)足0<f′(x)<1.給出如下函數(shù):
f(x)=
x
2
+
sinx
4
;
②f(x)=x+tanx,x∈(-
π
2
π
2
)
;
③f(x)=log3x+1,x∈[1,+∞).
其中是集合M中的元素的有
①③
①③
.(只需填寫(xiě)函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<1),使得對(duì)任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿(mǎn)足如下條件的函數(shù)φ(x)組成的集合:
(1)對(duì)任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對(duì)任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案