在數(shù)列{an}中,a1=1,an+1=an2+4an+2,n∈N*
(I)設(shè)bn=log3(an+2),證明數(shù)列{bn}是等比數(shù)列;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)cn=
4
an-2
-
1
an
+
1
an+4
,求數(shù)列{cn}的前n項(xiàng)和Tn
證明:(I)由a1=1,an+1=an2+4an+2
an+1+2=(an+2)2
∴l(xiāng)og3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
log3(an+2)=2n-1
an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
cn=
4
an-2
-
1
an
+
1
an+4
=
4
an-2
-(
1
an
-
1
4+an
)

=
4
an-2
-
4
an(an+4)
=
4
an-2
-
4
an+1-2
(10分)
∴Tn=c1+c2+…+cn=
4
a1-2
-
4
a2-1
+…+
4
an-2
-
4
an+1-2
(10分)
=
4
a1-2
-
4
an+1-2
=-4-
4
32n-4
(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊答案