設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=lnx+2x•f′(1),則f′(1)=
-1
-1
分析:對函數(shù)f(x)的解析式求導(dǎo),得到其導(dǎo)函數(shù),把x=1代入導(dǎo)函數(shù)中,列出關(guān)于f'(1)的方程,進(jìn)而得到f'(1)的值.
解答:解:求導(dǎo)得:f′(x)=
1
x
+2f′(1),
令x=1,得到f′(1)=2f′(1)+1,
解得:f′(1)=-1,
故答案為:-1
點評:本題主要考查了導(dǎo)數(shù)的運(yùn)算,運(yùn)用求導(dǎo)法則得出函數(shù)的導(dǎo)函數(shù),求出常數(shù)f'(1)的值,從而確定出函數(shù)的解析式是解本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省江南十校高三素質(zhì)教育聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)M是由滿足下列條件的函數(shù)f(X)構(gòu)成的集合:

①方程有實數(shù)根;

②函數(shù)的導(dǎo)數(shù) (滿足

(I )若函數(shù)為集合M中的任一元素,試證明萬程只有一個實根;

(II)    判斷函^是否是集合M中的元素,并說明理由;

(III)   “對于(II)中函數(shù)定義域內(nèi)的任一區(qū)間,都存在,使得”,請利用函數(shù)的圖象說明這一結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案