鑫隆房地產(chǎn)公司用2160萬元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為層,則每平方米的平均建筑費(fèi)用為(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=

為了樓房每平方米的平均綜合費(fèi)最少,該樓房應(yīng)建為15層。

解析試題分析:設(shè)樓房每平方米的平均綜合費(fèi)為元,則
 3分
方法一: ,   5分 
 得   7分
當(dāng)  時(shí), ;當(dāng) 時(shí),,
因此 當(dāng)時(shí),取最小值 10分
(方法二:, 8分
當(dāng)且僅當(dāng)時(shí)成立,即時(shí), 10分)
。
答:為了樓房每平方米的平均綜合費(fèi)最少,該樓房應(yīng)建為15層。 12分
考點(diǎn):本題考查了函數(shù)的實(shí)際運(yùn)用
點(diǎn)評(píng):與函數(shù)有關(guān)的應(yīng)用題,經(jīng)常涉及物價(jià)、路程、產(chǎn)值、環(huán)保等實(shí)際問題,也可涉及角度、面積、體積、造價(jià)的最優(yōu)化問題。解答這類問題的關(guān)鍵是確切建立相應(yīng)的函數(shù)解析式,然后應(yīng)用函數(shù)、方程和不等式的有關(guān)知識(shí)加以綜合解答。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個(gè)月。經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣!董h(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級(jí):其中,中度污染(四級(jí)),指數(shù)為151—200;重度污染(五級(jí)),指數(shù)為201—300;嚴(yán)重污染(六級(jí)),指數(shù)大于300. 下面表1是該觀測(cè)點(diǎn)記錄的4天里,AQI指數(shù)與當(dāng)天的空氣水平可見度(千米)的情況,表2是某氣象觀測(cè)點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)結(jié)果,
表1:AQI指數(shù)與當(dāng)天的空氣水平可見度(千米)情況

AQI指數(shù)




空氣可見度(千米)




表2:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)
AQI指數(shù)





頻數(shù)
3
6
12
6
3
(Ⅰ)設(shè)變量,根據(jù)表1的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)表2估計(jì)這30天AQI指數(shù)的平均值.
(用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙.已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.
據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如下表:

所用的時(shí)間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).
(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路1、公路2的“一次性費(fèi)用”分別為萬元、萬元(其它費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產(chǎn)商2萬元.如果汽車A、B長(zhǎng)期按(Ⅰ)所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤(rùn)更大.(注:毛利潤(rùn)=(銷售商支付給生產(chǎn)商的費(fèi)用)一(一次性費(fèi)用)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
。
(1)求m的值;
(2)判斷上的單調(diào)性并加以證明;
(3)當(dāng)的值域是(1,+),求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某醫(yī)藥研究所開發(fā)一種新藥,在實(shí)驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量(微克)與時(shí)間(小時(shí))之間滿足
其對(duì)應(yīng)曲線(如圖所示)過點(diǎn).

(1)試求藥量峰值(的最大值)與達(dá)峰時(shí)間(取最大值時(shí)對(duì)應(yīng)的值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長(zhǎng)的有效時(shí)間?(精確到0.01小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),在時(shí)取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若時(shí),恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若,是否存在實(shí)數(shù)b,使得方程在區(qū)間上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 是定義在  上的增函數(shù),且對(duì)任意的都滿足 .
(Ⅰ)求的值;   (Ⅱ)若,證明
(Ⅲ)若,解不等式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
(1)
(2)已知,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)計(jì)一副宣傳畫,要求畫面積為4840,畫面的寬與高的比為,畫面的上,下各留8空白,左右各留5空白,怎樣確定畫面的高于寬尺寸,能使宣傳畫所用紙張面積最小?

查看答案和解析>>

同步練習(xí)冊(cè)答案