已知函數(shù)fx)=sin2x+sinxcosxxÎR).

(1)若,求fx)的最大值;

(2)在△ABC中,若AB,fA)=fB)=,求  的值.

 

【答案】

(1)fx)=sin2x

sin2xcos2x=sin(2x).

∵0x,∴-2x.           ------------------3分

∴當2x時,即x時,fx)的最大值為1.---------------------5分

(2)∵fx)=sin(2x),x是三角形的內(nèi)角,則0<x<p,-<2x 

fx)=,得sin(2x)=,∴2x,或2x,-------7分

解得x,或x.-------------------------------------8分

由已知,A,B是△ABC的內(nèi)角,ABfA)=fB)=,∴A,B --9分

C=p-AB----------------------------------------10分

由正弦定理,得

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:張家港市后塍高級中學(xué)2006~2007年第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測試卷 題型:044

已知函數(shù)f(x)=ax2+bx+1(a,b∈R)

(1)

f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立,求f(x)表達式

(2)

在1條件下,當x∈[-2,2]時,S(x)=xf(x)-kx單調(diào)遞增,求實數(shù)k取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:013

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點,且在x=±1處的切線斜率均為-1.有以下命題:

①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0;④若對x∈[-2,2],k≤恒成立,則k的最大值為2.其中正確命題的個數(shù)為

[  ]

A.1個

B.2個

C.3個

D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2012屆高三10月月考數(shù)學(xué)文科試題 題型:044

已知函數(shù),g(x)=lnx.

(1)設(shè)F(x)=f(x)+g(x),當a=2時,求F(x)在上的單調(diào)區(qū)間;

(2)在條件(1)下,若對任意(e為自然對數(shù)的底數(shù))均有|F(x1)-F(x2)|<3m+-6恒成立,求實數(shù)m的取值范圍;

(3)設(shè)G(x)=f(x)-g(x)在x=1處的切線與坐標軸圍成的三角形面積為S,存在α∈N*且a≠4使得t≤S成立,求最大的整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3x2x=-1處取得極值,記g(x)=,程序框圖如圖所示,若輸出的結(jié)果S>,則判斷框中可以填入的關(guān)于n的判斷條件是                                   (  )

A.n≤2 011?                       B.n≤2 012?

C.n>2 011?                        D.n>2 012?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)f(x)=ax3x2在x=-1處取得極大值,記g(x)=。程序框圖如圖所示,若輸出的結(jié)果S=,則判斷框中可以填入的關(guān)于n的判斷條件是(    )

A.n≤2013   B.n≤2014        C.n>2013     D.n>2014

 

查看答案和解析>>

同步練習(xí)冊答案