已知函數(shù)f(x)=sin2x+sinxcosx-(xÎR).
(1)若,求f(x)的最大值;
(2)在△ABC中,若A<B,f(A)=f(B)=,求 的值.
(1)f(x)=+sin2x-=
sin2x-cos2x=sin(2x-).
∵0x,∴-2x-. ------------------3分
∴當2x-=時,即x=時,f(x)的最大值為1.---------------------5分
(2)∵f(x)=sin(2x-),x是三角形的內(nèi)角,則0<x<p,-<2x-<
令f(x)=,得sin(2x-)=,∴2x-=,或2x-=,-------7分
解得x=,或x=.-------------------------------------8分
由已知,A,B是△ABC的內(nèi)角,A<B且f(A)=f(B)=,∴A=,B= --9分
∴C=p-A-B=----------------------------------------10分
由正弦定理,得=.
【解析】略
科目:高中數(shù)學(xué) 來源:張家港市后塍高級中學(xué)2006~2007年第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測試卷 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:013
已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點,且在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0;④若對x∈[-2,2],k≤恒成立,則k的最大值為2.其中正確命題的個數(shù)為
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2012屆高三10月月考數(shù)學(xué)文科試題 題型:044
已知函數(shù),g(x)=lnx.
(1)設(shè)F(x)=f(x)+g(x),當a=2時,求F(x)在上的單調(diào)區(qū)間;
(2)在條件(1)下,若對任意(e為自然對數(shù)的底數(shù))均有|F(x1)-F(x2)|<3m+-6恒成立,求實數(shù)m的取值范圍;
(3)設(shè)G(x)=f(x)-g(x)在x=1處的切線與坐標軸圍成的三角形面積為S,存在α∈N*且a≠4使得t≤S成立,求最大的整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3+x2在x=-1處取得極值,記g(x)=,程序框圖如圖所示,若輸出的結(jié)果S>,則判斷框中可以填入的關(guān)于n的判斷條件是 ( )
A.n≤2 011? B.n≤2 012?
C.n>2 011? D.n>2 012?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ax3+x2在x=-1處取得極大值,記g(x)=。程序框圖如圖所示,若輸出的結(jié)果S=,則判斷框中可以填入的關(guān)于n的判斷條件是( )
A.n≤2013 B.n≤2014 C.n>2013 D.n>2014
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com