2、{(x,y)|x+y=6,x,y∈N} 用列舉法表示為
{(0,6),(1,5),(2,4)(3,3),(4,2),(5,1),(6,0)}
分析:對x從最小的自然數(shù)0開始進(jìn)行逐一列舉,將滿足條件的點(diǎn)用集合表示出來即可.
解答:解{(x,y)|x+y=6,x,y∈N}={(0,6),(1,5),(2,4)(3,3),(4,2),(5,1),(6,0)}
故答案為:{(0,6),(1,5),(2,4)(3,3),(4,2),(5,1),(6,0)}
點(diǎn)評:本題主要考查了點(diǎn)集的表示方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A和B都是坐標(biāo)平面上的點(diǎn)集{(x,y)|x∈R,y∈R},映射f:A→B把集合A中的元素(x,y}映射成集合B中的元素(x+y,x-y),則在映射f下,象(2,1)的原象是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y∈R+,且x≠y,則“
 x y 
,
2 x y
 x+y 
,
 x+y 
2
”的大小關(guān)系是…( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)若對任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實(shí)數(shù)z均成立.
今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
f(x,y)=
x-y
; ④f(x,y)=x2+y2
能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y∈{x|x=a0+a1•10+a2•100},其中ai∈{1,2,3,4,5,6,7}(i=0,1,2),且x+y=636,則實(shí)數(shù)對(x,y)表示坐標(biāo)平面上不同點(diǎn)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各圖分別是y=|tanx|,y=tanx,y=tan(-x),y=tan|x|在x∈(-,)內(nèi)的大致圖象,那么,由左至右對應(yīng)的函數(shù)關(guān)系式應(yīng)是(    )

圖1-4-15

A.y=|tanx|,y=tanx,y=tan(-x),y=tan|x|            B.y=|tanx|,y=tan(-x),y=tan|x|,y=tanx

C.y=tan(-x),y=tanx,y=tan|x|,y=|tanx|            D.y=|tanx|,y=tanx,y=tan|x|,y=tan(-x)

查看答案和解析>>

同步練習(xí)冊答案