已知數(shù)列{a
n}滿足:a
1=1,na
n+1=2(n十1)a
n+n(n+1),(n∈N
*),
(I)若
bn=+1,試證明數(shù)列{b
n}為等比數(shù)列;
(II)求數(shù)列{a
n}的通項(xiàng)公式a
n與前n項(xiàng)和Sn.
(Ⅰ)證明:∵na
n+1=2(n+1)a
n+n(n+1),∴
=+1,…(2分)
∴
+1=+2=2(+1),即b
n+1=2b
n,
又b
1=2,所以{b
n}是以2為首項(xiàng),2為公比的等比數(shù)列.…(6分)
(Ⅱ)由(Ⅰ)知
bn=2n,∴
+1=2n,∴
an=n(2n-1),…(8分)
∴
=1×(2-1)+2×(22-1)+3×(23-1)+…+n(2n-1)=1×2+2×2
2+3×2
3+…+n•2
n-(1+2+3+…+n)=
1×2+2×22+3×23+…+n•2n-.…(10分)
令
Tn=1×2+2×22+3×23+…+n•2n,
則
2Tn=1×22+2×23+3×24+…+n•2n+1,
兩式相減得:
-Tn=2+22+23+…+2n-n•2n+1=-n•2n+1,
Tn=2(1-2n)+n•2n+1=(n-1)•2n+1+2.…(12分)
∴
Sn=(n-1)•2n+1+2-.…(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n}滿足:a
1=1且
an+1=, n∈N*.
(1)若數(shù)列{b
n}滿足:
bn=(n∈N*),試證明數(shù)列b
n-1是等比數(shù)列;
(2)求數(shù)列{a
nb
n}的前n項(xiàng)和S
n;
(3)數(shù)列{a
n-b
n}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n}滿足
a1+a2+a3+…+an=2n+1則{a
n}的通項(xiàng)公式
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n}滿足:a
1=
,且a
n=
(n≥2,n∈N
*).
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a
1•a
2•…a
n<2•n!
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n}滿足a
n+1=|a
n-1|(n∈N
*)
(1)若
a1=,求a
n;
(2)若a
1=a∈(k,k+1),(k∈N
*),求{a
n}的前3k項(xiàng)的和S
3k(用k,a表示)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
(2012•北京模擬)已知數(shù)列{a
n}滿足a
n+1=a
n+2,且a
1=1,那么它的通項(xiàng)公式a
n等于
2n-1
2n-1
.
查看答案和解析>>