分析 (Ⅰ)證明△ABD≌△CBD,BD=60°且∠BAC=30°,得到BD⊥AC,利用直線與平面垂直的判定定理證明BD⊥面PAC.
(Ⅱ)證明OG∥PA,然后證明PA∥面BDG.
(Ⅲ)求出PC,說明PC⊥GD,在△PDC中,利用勾股定理求解邊長,然后推出比值即可.
解答 解:(Ⅰ)證明:由已知得三角形ABC是等腰三角形,且底角等于30°,
且AB=CB,AD=CD,BD=DB,⇒△ABD≌△CBD,⇒∠ABD=∠∠BD=60°且∠BAC=30°.,
所以BD⊥AC,又因?yàn)?\left.\begin{array}{l}PA⊥ABCD⇒BD⊥PA\\ BD⊥AC\end{array}\right\}⇒BD⊥PAC$; …(4分)
(Ⅱ)證明:設(shè)AC∩BD=O,由(1)知 O為AC中點(diǎn),則OG∥PA,
又PA?面BDG,OG?面BDG,
∴PA∥面BDG …(8分)
(Ⅲ)解:由已知得到:$PC=\sqrt{P{A^2}+A{C^2}}=\sqrt{3+12}=\sqrt{15}$,
因?yàn)镻C⊥BGD∴PC⊥GD,
在△PDC中,$PD=\sqrt{3+7}=\sqrt{10},CD=\sqrt{7},PC=\sqrt{15}$,
設(shè)$PG=x∴CG=\sqrt{15}-x∴10-{x^2}=7-{(\sqrt{15}-x)^2}∴PG=x=\frac{3}{5}\sqrt{15},GC=\frac{2}{5}\sqrt{15}∴\frac{PG}{GC}=\frac{3}{2}$…(12分)
點(diǎn)評 本題考查直線與平面垂直的判定定理的應(yīng)用.三角形的全等以及勾股定理,空間想象能力以及計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{45}$ | B. | $\frac{1}{15}$ | C. | $\frac{2}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com