將一塊圓心角為120°,半徑為20 cm的扇形鐵片截成一塊矩形,如圖,有2種裁法:讓矩形一邊在扇形的一半徑OA上或讓矩形一邊與弦AB平行,請(qǐng)問(wèn)哪種裁法能得到最大面積的矩形,并求出這個(gè)最大值.

解:對(duì)圖甲,設(shè)∠MOA=θ,則S1=200sin2θ.
∴當(dāng)θ=45°時(shí),(S1max=200cm2
對(duì)圖乙,設(shè)∠MOA=α,
則S2=[cos(2α-60°)-cos60°].
當(dāng)α=30°時(shí),(S2max=cm2
>200,
∴用乙種方法好.
分析:對(duì)甲種裁法分析設(shè)∠MOA=θ,則矩形的一邊為20sinθ,一邊為20cosθ,則得出面積,利用正弦函數(shù)取最值的方法求出最大面積;對(duì)乙種裁法分析設(shè)∠MOA=α利用三角函數(shù)表示出長(zhǎng)為40sin(60°-α),再用相似三角形求得寬,進(jìn)而表示出面積,利用余弦函數(shù)取最大值的方法求出最大面積.比較看哪個(gè)面積大即可.
點(diǎn)評(píng):考查學(xué)生根據(jù)實(shí)際問(wèn)題選擇函數(shù)類(lèi)型的能力,以及運(yùn)用兩角和與差的正弦函數(shù)的能力,求正弦函數(shù)最值的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將一塊圓心角為120°,半徑為20 cm的扇形鐵片截成一塊矩形,如圖,有2種裁法:讓矩形一邊在扇形的一半徑OA上或讓矩形一邊與弦AB平行,請(qǐng)問(wèn)哪種裁法能得到最大面積的矩形,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

將一塊圓心角為120°,半徑為20cm的扇形鐵片裁成一塊矩形,如圖所示,有兩種裁法:讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB平行,試問(wèn)哪種裁法能得到矩形的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市首師大附中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

將一塊圓心角為120°,半徑為20 cm的扇形鐵片截成一塊矩形,如圖,有2種裁法:讓矩形一邊在扇形的一半徑OA上或讓矩形一邊與弦AB平行,請(qǐng)問(wèn)哪種裁法能得到最大面積的矩形,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):4.3 兩角和與差、二倍角的公式2(解析版) 題型:解答題

將一塊圓心角為120°,半徑為20 cm的扇形鐵片截成一塊矩形,如圖,有2種裁法:讓矩形一邊在扇形的一半徑OA上或讓矩形一邊與弦AB平行,請(qǐng)問(wèn)哪種裁法能得到最大面積的矩形,并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案