已知直線方程分別為7x8y9=0,7x8y3=0,直線l平行于,直線l的距離為,與的距離為,且求直線l的方程.

答案:略
解析:

解:由于直線所以該直線l方程為7x8yC=0,

直線l距離直線l距離

C=21C=5

于是直線l的方程為7x8y21=07x8y5=0

解法2:設(shè)直線l上任一點(diǎn)P(x,y),點(diǎn)P到直線的距離為,點(diǎn)P到直線的距離為,由

2(7x8y9)=±(7x8y3)

∴所求直線的方程為7x8y21=07x8y5=0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),橢圓的離心率e=
3
2
,過F1的直線交橢圓于M,N兩點(diǎn),且△MNF2的周長為8
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l方程為f(x,y)=0,P1(x1,y1)和P2(x2,y2)分別為直線l上和l外的點(diǎn),則方程f(x,y)-f(x1,y1)-f(x2,y2)=0表示(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州一模)已知F1,F(xiàn)2分別為橢圓C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦點(diǎn),其F1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF2|=
3
5

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知直線方程分別為7x+8y+9=0,7x+8y-3=0,直線l平行于,直線l的距離為,與的距離為,且求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案