【題目】下列命題中正確的是( )
A. 命題“”的否定是“”
B. 命題“為真”是命題“為真”的必要不充分條件
C. 若“,則”的否命題為真
D. 若實數(shù),則滿足的概率為.
【答案】C
【解析】
選擇題可以逐一判斷,對于A項,x2﹣x≤0”的否定應該是x2﹣x>0”.
對于B項,“p∧q為真”是“pVq為真”的充分不必要條件.
對于C選項,若“,則”的否命題為“若am2>bm2,則 a>b”,正確.
對于D項,由幾何概型,x2+y2<1的概率為,應由對立事件的概率的知識來求x2+y2≥1的概率.
由全稱命題的否定是特稱命題可知“x∈R,x2﹣x≤0”的否定應該是“x∈R,x2﹣x>0”,因此選項A不正確.
對于B項,p∧q為真可知p、q均為真,則有pVq為真,反之不成立,故“p∧q為真”是“pVq為真”的充分不必要條件,因此B錯誤.
對于選項C,“若am2≤bm2,則a≤b”的否命題是“若am2>bm2,則a>b”,顯然其為真命題.
對于D項,由幾何概型可知,區(qū)域D為邊長為1的正方形,區(qū)域d為1為半徑,原點為圓心的圓外部分,則滿足x2+y2≥1的概率為p==1﹣=,故D錯誤.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】已知首項均為的數(shù)列,,滿足.
(1)令,求數(shù)列的通項公式;
(2)若數(shù)列為各項均為正數(shù)的等比數(shù)列,且,設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線和是異面直線,在平面內,在平面內,是平面與平面的交線,則下列命題正確的是( )
A. 與都不相交 B. 與都相交
C. 至多與中的一條相交 D. 至少與中的一條相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題:函數(shù)的兩個零點分別在區(qū)間和上;命題:函數(shù)有極值.若命題,為真命題的實數(shù)的取值集合分別記為,.
(1)求集合,;
(2)若命題“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)3個不同的小球放入編號為1,2,3,4的4個盒子中,一共有多少種不同的放法?
(2)3個不同的小球放入編號為1,2,3,4的4個盒子中,恰有2個空盒的放法共有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1到7的7個數(shù)字中取兩個偶數(shù)和三個奇數(shù)組成沒有重復數(shù)字的五位數(shù).
試問:(1)能組成多少個不同的五位偶數(shù)?
(2)五位數(shù)中,兩個偶數(shù)排在一起的有幾個?
(3)兩個偶數(shù)不相鄰且三個奇數(shù)也不相鄰的五位數(shù)有幾個?(所有結果均用數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的定義域為A,若且時總有,則稱為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:
①函數(shù)(xR)是單函數(shù);
②指數(shù)函數(shù)(xR)是單函數(shù);
③若為單函數(shù),且,則;
④在定義域上具有單調性的函數(shù)一定是單函數(shù).
其中的真命題是_________.(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某校120名學生假期閱讀時間(單位: 小時)的頻率分布表,現(xiàn)用分層抽樣的方法從,,,四組中抽取20名學生了解其閱讀內容,那么從這四組中依次抽取的人數(shù)是( )
分組 | 頻數(shù) | 頻率 |
12 | 0.10 | |
30 | ||
0.40 | ||
n | 0.25 | |
合計 | 120 | 1.00 |
A.2,5,8,5B.2,5,9,4C.4,10,4,2D.4,10,3,3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電動車售后服務調研小組從汽車市場上隨機抽取20輛純電動汽車調查其續(xù)駛里程(單次充電后能行駛的最大里程),被調查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求續(xù)駛里程在的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com